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ABSTRACT f I _

A numerical study of the generation of Tollmien-Schlichting waves due to the interaction

between a small free-stream disturbance and a small localized suction slot on an otherwise

flat surface has been carried out using finite-difference methods. The nonlinear steady flow

is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to

be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions

illustrate the growth or decay of the T-S waves generated by the interaction between the

freestream disturbance and the suction slot, depending on the value of the scaled Strouhal

number. An important result of this receptivity problem is the numerical determination of

the amplitude of the Tollmien-Schlichting waves and the demonstration of the possible active/

control of the growth of Tollmien-Schlichting waves. ,'fi

'Research was supported by the National Aeronautics and Space Administration under NASA Contract
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I. Introduction

With the development of more complicated flight vehicles the

prediction and control of boundary-layer transition have become ever

increasing areas of interest. Furthermore, the problem of boundary-

layer receptivity due to free-stream acoustic disturbances has been

of renewed interest recently since it is believed that this

receptivity plays a key role in the early stages of the transition of

a boundary-layer flow from a laminar to a turbulent state.

Early studies of the receptivity problem have been reviewed by

ReshotkoI and more recent studies include the work of Murdock 2,

Goldstein3 ,4' 5, Goldstein, Sockol and Sanz 6, Goldstein, Leib and

Cowley 7, and Bodonyi, Welch, Duck and Tadjfar8 . Here the role of

small free-stream disturbances in the generation of Tollmien-

Schlichting (T-S) waves have been examined in detail for a variety of

problems indicating the important role that nonparallel flow effects

have on the receptivity mechanisms. In particular, the studies by

Goldstein and his co-workers and Bodonyi et al. have shown the

effects that small variations in surface geometry have on scattering

weak unsteady free-stream disturbances into T-S waves using triple-

deck theory. Their results showed conclusively that relatively small

surface variations which set up equally small pressure changes can

produce an order one coupling between the T-S waves and the imposed

disturbance when these variations are sufficiently rapid that they

occur on the scale of a T-S wave.

Bodonyi et al. 8 showed that for sufficiently small surface
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distortions such that the steady flow is governed by linear

equations, the scaled disturbance amplitudes depend approximately

linearly on the surface height. For larger values of the surface

height parameter, wherein the basic flow is governed by the full

nonlinear triple-deck equations, their results showed that there is

an increasingly nonlinear enhancing effect on the disturbance

amplitudes.

The concept of transition control has also been of renewed

interest lately, with an emphasis on attempting to control linearized

boundary-layer disturbances actively. Liepman, Brown and Nosenchuck 9

and Liepman and NosenchuckI0 have demonstrated experimentally that

nearly complete cancellation of a T-S wave excited by the periodic

heating of flush-mounted elements can be achieved by using a second

downstream element with a suitable phase shift. We demonstrate that

such wave cancellations are also possible in this study by

appropriately choosing the wall suction velocity.

Following the work of Bodonyi et al. 8 we take the steady nonlinear

viscous-inviscid interactive solutions of the triple-deck kind for

the basic steady motion of a localized suction slot on an otherwise

flat surface as the basic flow. Additionally, we shall assume that

the unsteady flow is governed by the Navier-Stokes equations

linearized about the nonlinear steady state as in Smith11 .
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II. Problem Formulation

We wish to study the interaction between an unsteady freestream

and a localized suction slot on a flat plate for an incompressible

two-dimensional viscous flow. Thus following Bodonyi et al. 8 we take

the upstream motion to consist of a uniform flow with velocity U

plus a small harmonic perturbation of frequency a and constant

amplitude u << U , so that the unsteady motion can be analyzed as a

linear perturbation of the uniform steady flow, U., i.e., U.(1 +
* * -i~t *

u/Ue ).
* *

Consider a Cartesian coordinate system (x ,y ) with x tangent to

and y normal to the flat plate with the origin taken at the leading

edge. Further, define the Reynolds number Re = UmL /v, where L is

the distance of the surface perturbation from the leading edge of the

flat plate and v is the kinematic viscosity of the fluid. For

convenience, we introduce the small parameter c = Re- I/8 and consider

solutions of the Navier-Stokes equations when Re >> 1. Specifically,

we wish to consider the problem of flow over a small slot of length
* 3 *

O(L*E3) positioned at a distance L from the leading edge. The

interaction region is shown schematically in Figure 1.

Thus we take

U(x,y,t) U (x,y) + 6u(x,y,t) , (la)0

V(x,y,t) = V (x,y) + 6v(x,y,t) , (1b)0

P(x,y,t) = P (x,y) + 6 p(x,y,t) , (Ic)0

where the steady velocity components,U , Vo, and pr.essure, P0, are

* *2 - -

normalized by U and pU* , respectively and u,v,p the unsteady

velocity and pressure terms normalized by u and du U
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respectively. Furthermore, we define

x = (x -L )/L , y = y /L , t = ot , 5 = uX/U . (2)

Substituting (1) - (2) into the Navier-Stokes equations and

neglecting terms of 0(82), we obtain the linearized perturbation

equations

3 a au " 2
Sau + UoU + u + Vo au + v Ty0 = - +  Eau + ayU, (3a)at oax ax oay 2y ax Re

-- av - - av 2- 2av +U v + 0 V 3v o 0 = p + l v + __ 3, (3b)
oyoax ay ay Re ax2 y 2

ax ay

au + 2v = 0 (3c)
ax ay

where S = a L /U , (3d)

is the Strouhal number.

Finally, we note that the physical interaction between the

oncoming boundary layer, freestream disturbance, and slot is governed

by a triple-deck structure, centered near the surface slot. The

details of the structure as applied to this type of problem have been

given by Goldstein5 and we, therefore, only summarize the relevant

portions here. As is usually the case the viscous interaction

problem essentially reduces to a study of the lower-deck equations.

Thus the appropriately scaled variables in the lower deck for the

steady flow are

U (x,y) = ,:U(X,Y) + 0(a2) (4a)

V (X,y) = ,3V(X,Y) + 0(F4 ) (4b)

P (x,y) = _2 p(X) + O(c 3 ) (4c)

where
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X = x/c 3 , y = y/E 5  (4d)

U, V, and P are found from the solution of the lower-deck equations:

au +  0 (5a)
ORx a

U E + V E- = X 2+y2U (5b)
ax 3Y ax a2

subject to the boundary conditions

U = 0, V = Vw for 1XI < Xsl, V 0 for 1XI > Xsl (6a)

(U,V,P) - (Y,0,0) as JXJ - , (6b)

U - [Y + A(X)] , Y - - , all X, (6c)

where we have assumed that a simple renormalization of the variables

has been carried out in order to set the value of the wall shear of

the oncoming, undisturbed boundary layer to unity.

Finally, the interaction condition for incompressible flow, given by

the Cauchy Hilbert integral

P(X) = 1/X ."0 (X-,)-l(dA/d )d (7)

is used to close the problem mathematically.

For the unsteady flow we introduce the following lower-deck

variables

it
u(x,y,t) = e u(XY) O(c) , (8a)

v(x,y,t) = c2e itv(X,Y) + O(c 3 ) , (8b)

p(x,y,t) = ce- itp(X) + 0(c 2 ) (8c)

In these expressions we have utilized the fact that since the

unsteady flow is governed by the linearized Navier-Stokes equations

we can seek solutions which have a harmonic time dependence.

Substituting (4d) and (8) into (3a) - (3c) yields, to leading order

in
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2
2su + Ua + uau au au aD u- ic ++ULLU-+(9a+ax ax ay 3Y ax a7~ (a2

au av = 0 (9b)
ax 5Y

As noted in the Introduction, our interest in this paper is in

the relatively high frequency case where we choose a to be of the

same order as the Tollmien-Schlichting wave frequency at and upstream

of the lower branch of the neutral stability curve. For this reason

we require that a = O(J - 2 ) i.e., the Strouhal number S = O(r- 2 ).

Thus we define a scaled Strouhal number S such that
0

S = 2S S = O0(1) (10)

Furthermore, in this case the Stokes-layer thickness is found to be

of O(e) also, and, therefore, it will be of O(c 5 ) in terms of the

lower-deck scalings. Thus the Stokes-layer thickness is of the same

order as the lower-deck thickness. Upstream of the triple-deck

region, where the mean flow changes on the scale of x, the unsteady

flow in the boundary layer is given by the Stokes solution, which can

be written in terms of the lower-deck scalings, as

u =1 - exp~i3/ 2 S1/ 2Y] , (Ila)

p = ixS (llb)

The lower-deck problem is completed by solving (9) using (10)

subject to the no slip condition at the wall

u = v = 0 on Y = 0, (12a)

matching with the main-deck solution

u - 1 + a(X), Y - -, all X, (12b)

and matching with the upstream Stokes layer solution given by (11)

for X - - . To mathematically close the boundary-value problem a
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relationship between the disturbance pressure and displacement

thickness must be given. For reasons discussed by Bodonyi et al. 8

the Hilbert integral relation used by Goldstein 5 is not appropriate.

Thus an alternative method based on that used by Bodonyi & Duck 12 in

treating three-dimensional interacting flows has been employed here

(and in Bodonyi et al. 8 ). In this approach, the relationship between

the disturbance pressure, p(X), and displacement thickness, -a(X), is

found through a numerical solution of the upper-deck equations as

opposed to a Hilbert integral representation. Specifically, it can

be shown that the appropriate boundary-value problem in the upper-

deck for the disturbance pressure is given by

2 ^  2 ^

+ 0 (13)
2 '2ax ay

with boundary conditions

A 2

(X,O) a  (14a)
ay dX2

oX 0, y - all X , (14b)
A + iS X - p(X) as -' 0, (14c)

p - 0  as X.-, (14d)
A

- ikp-. 0 as X- ' (14e)
ax

where we have written

p - p" = E[p(X,y) + iSoX] , y y/3 (15)

Note that (14e) defines a radiation condition applied on the

disturbance pressure at the downstream boundary to simulate the

outward propagating pressure Tollmien-Schlichting disturbances there.

The wave number, k, which depends on So, is found from the solution
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of the classical Orr-Sommerfeld eigenvalue problem (e.g. Duck1 3 ).

Alternatively, k can be computed iteratively from the numerical

computations, as discussed by Bodonyi et al. 8.
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III. Numerical Method

A. Steady-State Solution

First we consider the steady flow problem defined by equations

(5) - (7). Numerical solutions have been found using a finite-

difference procedure developed by Smith & Bodonyi1 4. Briefly, the

governing equations are replaced by difference representations for 1,

U = Oy, r = Uy, and P with uniform steps in X, Y. The computational

domain extends from X = X1 (<0) to X = X 2 (>0) and from Y = 0 to Y -

Y , with starting conditions (6b) specified, in effect, at X = XI '

The nonlinear difference equations at a given streamwise location

X are solved to within a tolerance of 106 in absolute value by

Newtonian iteration using Gaussian elimination and back substitution.

The solution is then advanced to the next streamwise location and the

process repeated until the entire domain is covered. Since the

problem is interactive, multiple forward-marching sweeps are

-5
necessary until a tolerance of 10 between successive values

obtained for P(X) is satisfied for all X. At this point the solution

is said to have converged in the global sense. The diagonally

dominant nature of the finite-difference form of the interaction law

(2.18) makes this multi-sweeping process both fast and stable.

Whenever flow reversal occurs, i.e., U < 0, windward differencing is

used to represent UU X in finite-difference form.

The numerical solution has been found for several values of the

wall suction parameter, Vw, and slot length parameter. Xsl.

Representative distributions of the wall shear r (X,0), and pressure,

P(X), of the steady flow are given in Figure 2 for Vw = -0.5 and Xsl

9



P(X), of the steady flow are given in Figure 2 for Vw = -0.5 and X. 1

= 0.50.

With the steady solution known, we now proceed to consider the

numerical solution of the complex unsteady linearized boundary-layer

equations (9). In our approach, the governing equations were solved

in the physical plane using a finite-difference method.

B. Unsteady Solution

The unsteady equations (9) were replaced by a system of

difference equations of second-order accuracy to be consistent with

the numerical method used for the steady flow problem. Since the

governing equations are linear no iteration in the normal direction

is .]ecessary at a fixed streamwise location. A single sweep across

the boundary-layer region was sufficient to determine the solution

there. Thus one complete sweep of the computational domain could be

accomplished quickly. Multiple sweeps of the entire domain are still

necessary to obtain the global solution, however, due to the elliptic

nature of equations (13) - (14).

For numerical convenience we subtract out the Stokes solution.

Thus consider the following change of variables

u(X,Y) = ± - exp[i 3/ 2 Sl/ 2Y] + U (X,Y) (16a)
0 0

v(X,Y) = V (X,Y) - is dp0  (16b)
o dX o dX

Then the disturbance equations can be written as

3u av
X (17a)
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I 3U o dP 0 u
is )u + U - 4- - v + V - + - - -0

'X i 0 -X Y o aY dX 2

3U + [ jU + i3 2 S V].exp[ i3/2SY (17b)
aX 3 +  i e/  a

with boundary conditions

u v = 0 on Y 0, all X , (18a)o o

u 0 0 as X- -- , all Y , (18b)

u a(X) + exp[i 3/ 2 Sl/ 2Y] as Y -. , all X. (18c)
00

Given a guess or an update for uo, v 0 , PO (X) and p(X,y)

everywhere, equations (17) - (18) are marched forward in X, while

simultaneously equations (13) - (14) are solved along a line of

Varying y. This then determines the complex-valued functions u0, V,

p and p (and hence a(X)) at a given streamwise location X. Sweeping

through all X stations constitutes one global iteration. Convergence

is finally attained when a global convergence test on a(X) is

satisfied.

The main features of the numerical scheme are the following. Two

and three-point differencing in Y is used for equations (17a) and

(17b), respectively, with equation (18c) applied at Y = Y. Three-

point. central differencing is used to approximate (13) in both

dimensions, while condition (14b) is applied at y y . Equation

'14a) is approximated by one-sided differencing in y and a second-

order scheme for X derivatives. Finally, the radiation condition is

applied in the following form to e.timate the disturbance pressure at

the downstream boundary

P(X max,y) = [p(Xmax -2X,y) -4p(X -AX,y) ]/[2ikAX-3]
max



The value for k is either prescribed as discussed earlier, or by

estimating its value from the relation (ap/aX)/ip from values of X

reasonably far downstream, and then feeding this value back into the

numerical computations. Numerically, the results indicate only

slight differences in estimating k in these two ways. This perhaps is

not too surprising since the viscous-inviscid interaction is a local

phenomenon and the behavior far downstream should approach that of

the classical stability theory.

Supposing we have n points in Y and m points in y, then at each X

station, the difference approximation of equations (17) and (13),

together with the interface conditions (14c) and (18c) can be written

conveniently in matrix form as discussed by Bodonyi & Duck1 2 . The

overall scheme is nominally second-order accurate in the grid

spacings X, AY and Ay. The resulting matrix equation is then solved

using standard Gaussian elimination procedures and back substitution.
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IV. Numerical Results

We first consider the effect of the Strouhal number, So, on the

interaction between the unsteady flow and the suction slot. To

minimize any nonlinear effects, a small value of the wall suction

velocity, Vw = -0.1, was chosen. The numerical solution was found

for several values of So , ranging from 1.0 to 3.0. In most cases 300

points were taken in the streamwise direction over the range -5 5 X :

25 (AX=0.10), although several cases were recomputed using 600 points

(AX=0.05) in the streamwise direction as a check on the numerical

accuracy of the solutions. In all cases the comparisons were very

good, generally indistinguishable to graphical accuracy. To solve

the lower-deck equations, 50 points were taken across the region over

the range 0 Y 5. Also, an additional 50 points were used in the

upper-deck ^ scaling over the range 0 s y ! 5, to solve Laplace's

equation for the pressure in the upper-deck region.

Using the finite-difference method of solution, convergence of

the numerical computations was achieved when the absolute value of

the difference in the displacement thickness, Rl{a(X) }, where Rl(

denotes the real part of t }, between two successive iterates was

less than 10- for all X. The number of iterations required for

convergence was found to be sensitive to the value of S under

consideration and also to the initial guess taken for the disturbance

profiles.

The disturbances produced by the interaction with the suction

slot should ultimately decay sufficiently far downstream of the slot

if the scaled freestream Strouhal number is below its critical value,
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socrit : 2.29. The real parts of the complex-valued disturbance

pressure, Rl(po(X) }, and wall shear, Rl{rw(X) } = Rl(auo/aY(X,0 ) },

for a representative subcritical case, S = 1.5, are presented in0

Figure 3. The decay in the disturbance amplitudes for both

quantities is clearly evident for X 5. Similarly, the disturbances

should amplify downstream of the surface distortion if S is0

supercritical. The same X range was also considered for typical

supercritical cases, So = 2.5 and 3.0. Figures 4 and 5 show the

amplification of the disturbances in the streamwise direction for

these cases. Note the change in scale between Figures 4 and 5 which

indicates the rapid increase in the amplitudes of the disturbance

profiles for supercritical disturbances.

We next consider the effect of increasing the magnitude of the

wall suction parameter, Vw, for a Strouhal number So = 2.5. As can

be seen in Figures 6 - 9, the disturbance solutions for these cases

have the same general shape as the previous solutions for Vw = -0.1.

Note that when Vw  -0.5, the disturbance amplitudes for both the

pressure and the wall shear decrease with downstream distance, at

least for X < 25, in spite of the fact So = 2.5 is supercritical and

we would, therefore, expect the waves to be amplified. This effect

clearly illustrates the damping effect that the appropriate amount of

wall suction can have on the growth of the T-S waves which are

locally generated by the interaction of the free-stream disturbances

with the suction slot. However, since So is supercritical, the T-S

waves must eventually begin to amplify sufficiently far downstream.

To see this effect, the case for Vw = -0.75, So = 2.5 was recomputed
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for the X range -5 : X : 35. The ultimate growth in the disturbance

wall shear is evident in Figure 10 for X 30.

To illustrate how our method can be used to simulate the concept

of transition control, as mentioned in the Introduction, we consider

the results for So = 3, with Vw = -0.10. The results for the real

part of the disturbance skin friction and pressure are shown in

Figure 6. Note that these results were obtained using a fine X grid,

with AX = =0.05 (as opposed to the standard AX = 0.10 grid); however,

these results proved to be indistinguishable, on the scale shown, to

those on the standard X grid, in spite of the discontinuous normal

velocity at X = ±0.5. These results also highlight, very clearly,

the growing nature of the Tollmien-Schlichting waves. In order to

show how thzse waves may be effectively annihilated, we solved the

related unsteady suction receptivity problem, i.e., (17) - (18),

without the Stokes solution, but with

v O  = 0 y = 0, 1XI > , (19a)

vO = 1 y = 0, lxI < (19b)

Results for this problem with So = 3 are shown in Figure 11, and

again show clearly the growing Tollmien-Schlichting wave pattern.

Since the wavelength of these T-S waves is identical to those of the

original receptivity problem, we are thus able to combine these two

sets of results in such a way so as to eliminate the growing

Tollmien-Schlichting waves. If we denote the solution to the

original problem as ud, and that of the suction receptivity problem

as us, we can then use superposition to write

Uc = ud + du s  (20)
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Here the quantity , was chosen such that

p(Xf) = 0,

viz.,

= -Pd(Xf)/Ps(Xf) (21)

where we chose Xf 19.9. Although this value is obviously

arbitrary, experimentation did suggest this value was not crucial,

confirming the robustness of the technique. This is also borne out

by the results shown in Figure 12, clearly showing negligible values

of the combined solution reasonably far downstream.
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V. Conclusions and Discussion

In this study we have investigated the interaction between a

surface suction slot and a small amplitude unsteady disturbance to

the freestream velocity.

Receptivity studies fall broadly into four distinct categories,

depending on the degree of nonlinearity. The first, such as that

studied by Goldstein5 involves a linear steady flow (the perturbation

parameter being the surface distortion parameter) and a linear

unsteady flow (the perturbation parameter being the amplitude of the

unsteady distortion). The second category involves a nonlinear

steady flow, together with a linear unsteady flow; this study and

that of reference 8 fall into this class. The third category

involves a fully nonlinear flow, with the steady flow being coupled,

nonlinearly with the unsteadiness; the study of Duck 16 is of this

class. However, the evidence is that many flows of this class,

including incompressible flows, will ultimately culminate in a

finite-time singularity. The fourth category may also exhibit such a

breakdown, as studied in reference 16, where a single linearization

is made, involving the surface distortion parameter.

In this paper we have shown how, at least in principle, T-S waves

may be effectively cancelled out by a second unsteady mechanism,

carefully chosen. As noted in the Introduction, such a technique has

obvious practical applications in the field of laminar flow control.
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Figure 4b. Disturbance wall shear for S 0 2.5, Vw = -0.10.
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Figure 5a. Disturbance pressure for S 0 =3, Vw -010
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Figure 5b. Disturbance wall shear for So = 3, VW, -0.10.
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Figure 6a. Disturbance pressure for S 0 2.5, Vw -0.25.
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Figure 6b. Disturbance wall shear for So = 2.5, Vw -0.25.
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Figure 7a. Disturbance pressure for S 0= 2.5, Vwr -0.50.
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Figure 7b. Disturbance wall shear for S 0 2.5, Vw -0.50.
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Figure 8a. Disturbance pressure for So 2.5, Vw -0.75.
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Figure 8b. Disturbance wall shear for So 2.5, VW -0.75.
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Figure 9 . Disturbance pressure for So = 2.5, Vw 10
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Figure 9b. Disturbance wall shear for So 2.5, V.W -10
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Figure 10. Disturbance wall shear for S = 2.5, Vw = -0.75,
and -5 < < 35. ow
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Figure Ila. Disturbance pressure for the suction receptivity

problem (us) for So = 3.0, Vw = -0.10.
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Figure lb. Disturbance wall shear for the suction receptivity

problem (us) for So = 3.0, Vw = -0.10.
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Figure 12a. Disturbance pressure for the combined receptivity
problem (Uc) for So = 3.0, Vw = -0.10.
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Figure 12b. Disturbance wall shear for the combined receptivity

problem (uc) for So = 3.0, Vw - -0.10.
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